Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1713: 464530, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38035518

RESUMO

Preparative liquid chromatography in reversed phase conditions (RPLC) is the most common approach adopted in the downstream processing for the purification of therapeutic peptides at industrial level. Due to the strict requirements on the quality imposed by the Regulatory Agencies, routinary methods based on the use of aqueous buffers and acetonitrile (ACN) as organic modifier are commonly used, where ACN is practically the only available choice for the purification of peptide derivatives. However, ACN is known to suffers of many shortcomings, such as drastic shortage in the market, high costs and, most importantly, it shows unwanted toxicity for human health and environment, which led it among the less environmentally friendly ones. For this reason, the selection of a suitable alternative becomes crucial for the sustainable downstream processing of peptides and biopharmaceuticals in general. In this paper, a promising green solvent, namely dimethyl carbonate (DMC) has been used for the separation of a peptide not only in linear conditions but also for its purification through non-linear overloaded chromatography. The performance of the process has been compared to that achievable with the common method where ACN is used as organic modifier and to that obtained with two additional solvents (namely ethanol and isopropanol), already used as greener alternatives to ACN. This proof-of-concept study showed that, thanks to its higher elution strength, DMC can be considered a green alternative to ACN, since it allows to reduce method duration while reaching good purities and recoveries. Indeed, at a target purity fixed to 98.5 %, DMC led to the best productivity with respect to all the other solvents tested, confirming its suitability as a sustainable alternative to ACN for the purification of complex biopharmaceutical products.


Assuntos
Cromatografia de Fase Reversa , Peptídeos , Humanos , Cromatografia de Fase Reversa/métodos , Solventes/química , Acetonitrilas/química , Cromatografia Líquida de Alta Pressão/métodos
2.
Eur J Pharm Sci ; 193: 106682, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142950

RESUMO

The biopharmaceutical industry faces the challenge of efficiently characterising impurity profiles of therapeutical peptides, also due to their complex polar and ionisable attributes. This research explores the potential of advanced chromatographic techniques to address this challenge. The study compares dynamic electrostatic repulsion reversed phase (d-ERRP) to its counterparts (static ERRP and ion pair reversed phase IP-RP) in analysing Icatibant and its elusive epimeric impurity, [L-Arg]1-Icatibant and highlights its exceptional capabilities in generating symmetric peaks, mitigating the common tailing phenomenon, and serving as a steadfast guardian of column longevity. The result highlights d-ERRP as a pioneering tool in the domain of liquid chromatography, fostering its role as a reference technique for the analysis of therapeutic peptides.


Assuntos
Bradicinina , Peptídeos , Cromatografia Líquida de Alta Pressão/métodos , Peptídeos/química , Cromatografia Líquida
3.
J Chromatogr A ; 1712: 464477, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37944433

RESUMO

Nowadays, environmental problems are drawing the attention of governments and international organisations, which are therefore encouraging the transition to green industrial processes and approaches. In this context, chemists can help indicate a suitable direction. Beside the efforts focused on greening synthetic approaches, currently also analytical techniques and separations are under observation, especially those employing large volumes of organic solvents, such as reversed-phase liquid chromatography (RPLC). Acetonitrile has always been considered the best performing organic modifier for RPLC applications, due to its chemical features (complete miscibility in water, UV transparency, low viscosity etc); nevertheless, it suffers of severe shortcomings, and most importantly, it does not fully comply with Environmental, Health and Safety (EHS) requirements. For these reasons, alternative greener solvents are being investigated, especially easily available alcohols. In this work, chromatographic performance of the most common solvents used in reversed-phase chromatography, i.e., acetonitrile, ethanol and isopropanol, have been compared to a scarcely used solvent, dimethyl carbonate (DMC). The analytes of interest were two small molecules, caffeine and paracetamol, whose kinetics and retention behaviour obtained with the four solvents have been compared, and all contributions to band broadening have been assessed. Results about kinetic performance are very promising, indicating that a small amount (7 % v/v) of DMC is able to produce the same efficiency as a 2.5-times larger ACN volume (18 % v/v), and larger efficiency than alcohols. This paper reports, for the first time, fundamental studies concerning the mass transfer phenomena when DMC is used as an organic solvent in RPLC, and, together with the companion paper, represents the results of a research whose final aim was to discover whether DMC is suitable for chromatographic applications both in linear and preparative conditions.


Assuntos
Cromatografia de Fase Reversa , Etanol , Cromatografia de Fase Reversa/métodos , Solventes/química , Etanol/química , Acetonitrilas/química , Cromatografia Líquida de Alta Pressão/métodos
4.
Pharmacol Res Perspect ; 11(4): e01117, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37455491

RESUMO

One of the main objectives of peptide drug design is the improvement of peptide pharmacokinetics with maintaining biological activity, which can be achieved by the complex modifications of the primary structure of the peptides. However, these changes often lead to the formation of peculiar impurities in the peptide drugs and their metabolites, which require the development of advanced analytical methods to properly assess their content. Here, we investigated the degradation of the potent long-acting GnRH antagonist degarelix in various biologic media by the tailor-made HPLC method, which allows precise determination of 5-Aph(Hyd)-degarelix isomer, an impurity found in the degarelix active pharmaceutical ingredient (API) during its manufacturing. Unexpectedly, we discovered a rapid and irreversible conversion of degarelix API into the corresponding hydantoin isomer in serum, suggesting that this impurity can be also a potential drug metabolite in vivo. This finding underlines the importance of the development of more accurate and performing analytical techniques to correctly characterize the chemical composition of the manufactured drugs and their behavior under physiological conditions.


Assuntos
Hormônio Liberador de Gonadotropina , Oligopeptídeos , Isomerismo , Antagonistas de Hormônios
5.
Molecules ; 27(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080254

RESUMO

Aggregation is among the most critical parameters affecting the pharmacological and safety profile of peptide Active Pharmaceutical Ingredients (APIs). For this reason, it is of utmost importance to define the exact aggregation state of peptide drugs, particularly when the API is marketed as a ready-to-use solution. Consequently, appropriate non-destructive techniques able to replicate the peptide environment must be employed. In our work, we exploited Asymmetrical Flow Field-Flow Fractionation (AF4), connected to UV, dRI, fluorescence, and MALS detectors, to fully characterize the aggregation state of Liraglutide, a peptide API used for the treatment of diabetes type 2 and chronic obesity. In previous studies, Liraglutide was hypothesized to assemble into hexa-octamers in phosphate buffer, but no information on its behavior in the formulation medium was provided up to now. The method used allowed researchers to work using formulation as the mobile phase with excellent recoveries and LoQ/LoD, discerning between stable and degraded samples, and detecting, when present, aggregates up to 108 Da. The native state of Liraglutide was assessed and found to be an association into pentamers, with a non-spherical conformation. Combined to benchmark analyses, the sameness study was complete and descriptive, also giving insight on the aggregation process and covalent/non-covalent aggregate types.


Assuntos
Fracionamento por Campo e Fluxo , Liraglutida , Fracionamento por Campo e Fluxo/métodos
6.
Molecules ; 26(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361839

RESUMO

The market of biomolecules with therapeutic scopes, including peptides, is continuously expanding. The interest towards this class of pharmaceuticals is stimulated by the broad range of bioactivities that peptides can trigger in the human body. The main production methods to obtain peptides are enzymatic hydrolysis, microbial fermentation, recombinant approach and, especially, chemical synthesis. None of these methods, however, produce exclusively the target product. Other species represent impurities that, for safety and pharmaceutical quality reasons, must be removed. The remarkable production volumes of peptide mixtures have generated a strong interest towards the purification procedures, particularly due to their relevant impact on the manufacturing costs. The purification method of choice is mainly preparative liquid chromatography, because of its flexibility, which allows one to choose case-by-case the experimental conditions that most suitably fit that particular purification problem. Different modes of chromatography that can cover almost every separation case are reviewed in this article. Additionally, an outlook to a very recent continuous chromatographic process (namely Multicolumn Countercurrent Solvent Gradient Purification, MCSGP) and future perspectives regarding purification strategies will be considered at the end of this review.


Assuntos
Peptídeos/química , Peptídeos/síntese química , Peptídeos/isolamento & purificação , Cromatografia Líquida , Humanos , Peptídeos/uso terapêutico
7.
Molecules ; 26(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299626

RESUMO

Bioactive peptides are increasingly used in clinical practice. Reversed-phase chromatography using formic or trifluoroacetic acid in the mobile phase is the most widely used technique for their analytical control. However, sometimes it does not prove sufficient to solve challenging chromatographic problems. In the search for alternative elution modes, the dynamic electrostatic repulsion reversed-phase was evaluated to separate eight probe peptides characterised by different molecular weights and isoelectric points. This technique, which involves TBAHSO4 in the mobile phase, provided the lowest asymmetry and peak width at half height values and the highest in peak capacity (about 200 for a gradient of 30 min) and resolution concerning the classic reversed-phase. All analyses were performed using cutting-edge columns developed for peptide separation, and the comparison of the chromatograms obtained shows how the dynamic electrostatic repulsion reversed-phase is an attractive alternative to the classic reversed-phase.


Assuntos
Cromatografia de Fase Reversa , Peptídeos/isolamento & purificação , Peptídeos/química , Eletricidade Estática
8.
J Chromatogr A ; 1625: 461304, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32709347

RESUMO

A twin-column Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) process has been developed for the purification of a therapeutic peptide, glucagon, from a crude synthetic mixture. This semi-continuous process uses two identical columns operating either in interconnected or in batch mode, thus enabling the internal recycle of the portions of the eluting stream which do not comply with purity specifications. Because of this feature, which actually results in the simulated countercurrent movement of the stationary phase with respect to the mobile one, the yield-purity trade-off typical of traditional batch preparative chromatography can be alleviated. Moreover, the purification process can be completely automatized. Aim of this work is to present a simple procedure for the development of the MCSGP process based on a single batch experiment, in the case of a therapeutic peptide of industrial relevance. This allowed to recover roughly 90% of the injected glucagon in a purified pool with a purity of about 90%. A comparison between the performance of the MCSGP process and the classical single column batch process indicates that percentage increase in the recovery of target product is +23% when transferring the method from batch conditions to MCSGP, with an unchanged purity of around 89%. This improvement comes at the expenses of a reduction of about 38% in productivity.


Assuntos
Distribuição Contracorrente/métodos , Peptídeos/isolamento & purificação , Solventes/química , Cromatografia Líquida de Alta Pressão , Glucagon/isolamento & purificação , Fatores de Tempo
9.
J Chromatogr A ; 1616: 460789, 2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31874699

RESUMO

The thermodynamic behavior of octreotide, a cyclic octapeptide with important pharmaceutical functions, has been simulated under reversed-phase gradient elution conditions. To this end, adsorption behavior was firstly investigated in isocratic conditions, under a variety of water/acetonitrile + 0.02% (v/v) trifluoroacetic acid (TFA) mixtures as mobile phase by using a Langmuir isotherm. Organic modifier was varied in the range between 23 and 28% (v/v). Adsorption isotherms were determined by means of the so-called Inverse Method (IM) with a minimum amount of peptide. The linear solvent strength (LSS) model was used to find the correlation between isotherm parameters and mobile phase composition. This study contributes to enlarge our knowledge on the chromatographic behavior under nonlinear gradient conditions of peptides. In particular, it focuses on a cyclic octapeptide.


Assuntos
Cromatografia de Fase Reversa/métodos , Modelos Teóricos , Dinâmica não Linear , Peptídeos/química , Adsorção , Cromatografia Líquida de Alta Pressão , Solventes/química , Temperatura , Água/química
10.
ACS Appl Mater Interfaces ; 9(23): 19552-19561, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28530795

RESUMO

Mechanobiology is an important epigenetic factor. It influences cell functioning and bears on gene induction, protein synthesis, cell growth, and differentiation. In the presence of patterned chemical cues, living cells can take shapes that are far from that of a drop of fluid. These shapes are characterized by inward curvatures that are pinned at the points of location of the cues. The mechanochemical interactions that orchestrate cell behavior is simulated and controlled by modeling the cells as made by parcels of fluid. Cells become drops that are then endowed with the presence of additional forces, generated on the fly, that effectively make them active. With the proper choice of the forces, the phenomena that emerge from the dynamics match quantitatively the experiments. A combination of hydrophilic and lipophilic forces acting between the beads of fluid allows the active drop to respond to patterned cues and form squares, pentagons, hexagons, and flowers, just as living cells do.


Assuntos
Tensão Superficial , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...